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Missing data are a recurring problem that can cause bias or
lead to inefficient analyses. Statistical methods to address miss-
ingness have been actively pursued in recent years, including im-
putation, likelihood, and weighting approaches. Each approach
is more complicated when there are many patterns of missing
values, or when both categorical and continuous random vari-
ables are involved. Implementations of routines to incorporate
observations with incomplete variables in regression models are
now widely available. We review these routines in the context
of a motivating example from a large health services research
dataset. While there are still limitations to the current imple-
mentations, and additional efforts are required of the analyst,
it is feasible to incorporate partially observed values, and these
methods should be used in practice.
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1. INTRODUCTION

Missing data are a frequent complication of any real-world
study. The causes of missingness are often numerous, some due
to design, and some to chance. Some variables may not be col-
lected from all subjects, some subjects may decline to provide
values, and some information may be purposely excised, for ex-
ample to protect confidentiality. While the use of complete case
methods that drop subjects missing any observations are com-
monly seen in practice, this approach has the disadvantage of
being inefficient as well as potentially biased.

The development of methods for analysis of data with incom-
plete values has been an active area of research. Models that
incorporate partially observed predictors are of particular inter-
est in many real-world settings, since missingness of just a few
percent on each of a number of covariates may lead to a large
number of observations with some missing information. The ex-
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cellent textbooks by Little and Rubin (2002), Schafer (1997),
and Allison (2002) provide a comprehensive overview of meth-
ods in this setting, focused primarily on multiple imputation.
Although somewhat dated, Little (1992) describes a hierarchy
of approaches to account for missing predictors, including the
maximum likelihood approach of Ibrahim (1990). Publications
by Meng (2000) and Raghunathan (2004) provide a general intro-
duction, and the paper by Ibrahim et al. (2005) reviews recent de-
velopments in a comprehensive fashion, though their application
(cancer dataset) features incompleteness on only one variable. A
useful online annotated bibliography provides a comprehensive
reading list (Carpenter 2006a).

In this article, we update the prior review of Horton and Lipsitz
(2001) and apply methods described by Ibrahim et al. (2005) to
the logistic regression analysis of a dataset with incompleteness
on four variables (both categorical and continuous) using a vari-
ety of software packages. We discuss modeling assumptions, ap-
proaches, and compromises required for estimation within cur-
rent implementations. In Section 2, we briefly review methods
for incorporating incomplete observations in regression models
then summarize findings of two surveys of how missing data
methods are used in practice in Section 3. We describe our moti-
vating example (which features a large dataset with high propor-
tion of missing values with a nonmonotone pattern) in Section 4,
detail support for missing data software in Section 5, then apply
these methods to the motivating dataset in Section 6. We contrast
the strengths and limitations of these packages in practice, and
suggest improvements for the future.

We focus on methods to incorporate partially observed pre-
dictors; different issues arise when some outcomes are not fully
observed. We also do not consider longitudinal or clustered out-
comes, for which other complications arise (e.g. Laird 1988;
Robins, Rotnitzky, and Zhao 1995; and Jansen et al. 2006).

2. INCOMPLETE DATA REGRESSION METHODS

2.1 Notation and Nomenclature

We begin by introducing notation that will be used through-
out, assuming that data are collected on a sample of n subjects
and that primary interest relates to the parameters governing the
conditional distribution f (Yi |Xi , βββ). To simplify exposition, we
suppress the subject indicator. For a given subject we can parti-
tion X into components denoting observed variables (Xobs) and
those that are missing for that subject (Xmis). We denote by R
a set of response indicators (i.e., Rj = 1 if the j th element of
X is observed, and equals 0 otherwise), governed by parame-
ters φφφ. Little and Rubin (2002) introduced a nomenclature for
missingness in terms of probability models for R. The missing
completely at random (MCAR) assumption is defined as

P(R|Y, X) = P(R|Y, Xobs, Xmis) = P(R|φφφ),
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where in addition φφφ and βββ are presumed distinct. Note that
this depends on an assumed relationship between R and the un-
observed and unknowable Xmis. Heuristically, this assumption
states that missingness is not related to any factor, known or
unknown, in the study.

It may be more plausible to posit that missingness is missing
at random (MAR), which assumes that

P(R|Y, X) = P(R|Y, Xobs, φφφ).

This assumption states that the missingness depends only on
observed quantities, which may include outcomes and predictors
(in which case the missingness is sometimes labeled covariate
dependent missingness (CDM)). The assumption regarding the
lack of association with unobserved quantities (Xmis) remains.
We note that at first glance, the meaning of the term “missing
at random” can be confusing, since missingness can actually be
predicted (but is random after controlling for missingness due to
observed quantities).

Researchers have noted that by including a relatively rich set
of predictors in the model, the MAR assumption may be made
more plausible (Collins, Schafer, and Kam 2001). Others have
noted that incorporation of information regarding the outcome
improves estimation of missing predictors (Moons et al. 2006).

It is possible to formally test the MCAR assumption against
the alternate hypothesis of MAR (Little 1988; Diggle et al. 2002).

Finally, if the missingness law P(R|Y, X) cannot be simplified
(i.e., it depends on unobserved quantities), the process is termed
nonignorable (abbreviated NINR [nonignorable nonresponse]
or MNAR [missing not at random]). In a NINR setting, the cor-
rect specification of the missingness law must be given to yield
consistent estimates of the regression parameters. Researchers
have addressed issues in the NINR setting (Diggle and Ken-
ward 1994; Little 1994). NINR models are particularly useful in
assessing the sensitivity of results to deviations from MAR miss-
ingness (Carpenter, Kenward, and Vansteelandt 2006). Without
additional information, it is inherently impossible to test whether
MAR holds (Little and Rubin 1987).

Another important concept regarding missing data, particu-
larly where there are multiple variables with missing values,
relates to the pattern of missing data. If the data matrix can be
rearranged in such a way that there is a hierarchy of missingness,
so that observing a particular variable Xb for a subject implies
that Xa is observed, for a < b, then the missingness is said to be
monotone. Figure 1 displays two hypothetical datasets. The left
hand dataset has been rearranged to create a monotone (“stair-
step”) pattern, though this is not possible in the right hand side of
the figure. When missingness is nonmonotone, models for the
missingness of one variable may include covariates which are
also missing values. Simpler methods can be used if the pattern
is monotone, though a monotone pattern is uncommon in most
realistic settings (including our motivating example).

2.2 Complete Case Method

The simplest method for the analysis of incomplete data re-
gression models involves the analysis of the set of observations
with no missing values. When missingness is MCAR, then the
complete case (CC) estimator is unbiased. The main drawback of

Hypothetical Hypothetical
Monotone Non-monotone

Pattern Y X1 X2 X3 Y X1 X2 X3
— — — — — — — — —
1 Obs Obs Obs Obs Obs Obs Obs Obs
2 Obs Obs Obs M Obs Obs Obs M
3 Obs Obs M M Obs Obs M M
4 Obs M M M Obs Obs M Obs
5 Obs M Obs Obs
6 Obs M M Obs

Figure 1. Monotone and nonmonotone patterns of missingness (Obs
= observed, M = missing)

the CC estimator is that if there are many different variables with
missing values, then a large fraction of the observations may be
dropped. For the example datasets in Figure 1, only data from
pattern 1 is included, though partial information is available from
the other patterns (e.g., the joint distribution of f (Y, X1, X2) can
be estimated from pattern 2). The efficiency losses of the com-
plete case estimator can be substantial (Little and Rubin 2002,
p. 42).

2.3 “Ad-hoc” Methods

A series of “ad-hoc” methods have been suggested to address
missing data. One approach for continuous variables involves
recoding missing values to some common value, creation of
an indicator of missingness as a new variable, and including
both these variables along with their interaction in the regression
model. A similar approach for categorical variables involves the
creation of an additional category for missing values. These ad-
hoc approaches have the potential to induce bias and are not
recommended (Jones 1996; Greenland and Finkle 1995).

A second approach involves dropping variables from the anal-
ysis that have a large proportion of missing values. This is not
attractive, since it may lead to the exclusion of important factors
in the regression model, with consequent bias or unnecessarily
large standard errors.

Two other approaches involve imputation of missing values
using mean imputation (average of the observed values) or for
longitudinal studies, the last observed value (also known as last
value carried forward, LVCF or last observation carried forward,
LOCF). Both methods have the potential of inducing bias as well
as understating variability and are not recommended (Carpenter
et al. 2004; Cook, Zeng, and Yi 2004; Jansen et al. 2006).

2.4 Multiple Imputation

Multiple imputation is a three-step approach to estimation of
incomplete data regression models due to Rubin (1976). First,
plausible values for missing observations are created that reflect
uncertainty about the nonresponse model. These values are used
to “fill-in” or impute the missing values (using an assumption
of MAR). This process is repeated, resulting in the creation of a
number of “completed” datasets. Second, each of these datasets
is analyzed using complete-data methods. Finally, the results are
combined, which allows the uncertainty regarding the imputation
to be taken into account. Typically 5–10 imputations are created,
though more are computationally feasible and better characterize
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the variability introduced into the results due to the imputation
process.

The method of multiple imputation was first proposed in a
public use survey data setting. Multiple imputation remains ide-
ally suited to this setting, since the creators of the dataset can
use auxiliary confidential and detailed information that would
be inappropriate to include in the public dataset (Rubin 1996).
Given the completed datasets, users may utilize existing soft-
ware to analyse each of the datasets. Given the results for each
analysis, an overall summary is straightforward to calculate.

Multiple imputation is, however, more commonly used in a
setting where the imputer and the analyst are the same person.
An extensive literature on the topic exists (Rubin 1987; Glynn
et al. 1993; Rubin 1996; Schafer 1999; Barnard and Meng 1999;
van Buuren et al. 1999; Allison 2000; Kenward and Carpenter in
press) as do implementations in general purpose statistical soft-
ware. A useful guide to software implementations can be found
at the multiple-imputation.com Web site (van Buuren 2006).

The key issue for the analyst is the appropriate specification
of the imputation model, since if this is misspecified, there is the
potential for bias. Often a multivariate normal model has been
used, as it is computationally tractable (since only the mean vec-
tor and variance-covariance matrix needs to be estimated). This
model has been used even when some of the variables are not
Gaussian, though this complicates analyses and if imputed val-
ues are rounded, can lead to bias (Horton, Lipsitz, and Parzen
2003; Allison 2005; Bernaards, Belin, and Schafer in press).
These issues are particularly salient when multiple categorical
and continuous variables have missing values, as the joint distri-
bution may be complicated. Finally, note that the analysis should
not use a richer model than that used for imputation (Little and
Rubin 2002).

We will now review a number of methods that have been pro-
posed for imputation models for categorical and continuous vari-
ables.

2.4.1 Conditional Gaussian

One approach to imputation when there are both continu-
ous and discrete missing values is the Conditional Gaussian
approach, popularized by Schafer (1997). A log-linear model
(Bishop, Fienberg, and Holland 1975) is specified for the dis-
crete random variables, and conditional on this distribution, a
multivariate normal distribution is assumed for the continuous
variables. This general location model (Olkin and Tate 1961) can
be fit as a saturated multinomial with separate means and shared
covariance, but this may lead to a proliferation of parameters in
real-world applications with multiple categorical variables. As a
result, simplification of the log-linear model is required in prac-
tice. This approach has been implemented in the MIX programs
of Schafer (assuming a form of monotonicity) as well as S-Plus
missing data library.

2.4.2 Chained Equations

An alternative approach involves a variable-by-variable ap-
proach using chained equations (van Buuren et al. 1999; Raghu-
nathan et al. 2001; van Buuren et al. 2006; van Buuren in press).
The imputation model is specified separately for each variable,
involving the other variables as predictors. At each stage of the

algorithm, an imputation is generated for the missing variable,
then this imputed value is used in the imputation of the next vari-
able. This process repeats, imputing missing values using a Gibbs
sampling procedure until the process reaches convergence. Sep-
arate chains are used to generate the multiple imputations.

For continuous variables, the model may involve a linear re-
gression model or use predictive mean matching (where the im-
puted variables takes on the value of one of a set of nearest ob-
served value in the dataset). For dichotomous variables, logistic
regression can be fit, while polytomous models are needed for
categorical variables. Implementations of the chained equation
approach are available in the MICE library (for R and S-Plus),
ICE (for Stata), IVEware (for SAS or standalone) or aregImpute
(for R and S-Plus).

One problem with the chained equation approach is that it
may not converge to a sensible stationary distribution if the sep-
arate models are not compatible with a multivariate distribution
(Raghunathan et al. 2001), though van Buuren et al. (2006) show
in a series of simulation studies that reasonable imputations were
obtained even when the separate models were incompatible. Ad-
ditional work is needed to further establish the validity of the
approach.

2.4.3 Methods for Monotone Datasets

A number of approaches are implemented in SAS PROC MI
for datasets with monotone missing structure. The predictive
mean matching method can be used to impute a value randomly
from a set of observed values whose predicted values are closest
to the predicted value from a specified regression model. This
process is straightforward when imputing a continuous random
variable, but more complicated when imputing a categorical vari-
able with more than two levels. The process begins with the
observations with only one missing value, and then uses those
values in the imputation of the observations with two missing
values, and so on. Analysts are warned that Allison (2000) found
that predictive mean matching approaches led to biased results
when applied to missing predictor models.

Similarly, regression or propensity score models can be used
to impute missing values.

One disadvantage of these approaches is that for datasets
with nonmonotone missingness, some observations need to be
dropped from the analysis, or some “ad-hoc” procedure used. As
an example, consider the hypothetical nonmonotone patterns in
Figure 1 (p. 80). It is possible to create a monotone dataset by
only including patterns (1, 2, 3), (1, 3, 6), (1, 3, 4), or (1, 5, 6). In
practice, however, in addition to being highly arbitrary, creation
of a dataset with monotone missingness may exclude a large
number of observations and be inefficient as well as potentially
biased.

The analyst may be able to creatively exploit patterns of miss-
ing values in a particular dataset. Consider, for example, using
patterns (1, 2, 3) to estimate f (X2, X3|Y, X1), and using pat-
terns (1, 4) to estimate f (X2|Y, X1, X3). We pursue this type of
strategy to avoid dropping observations in our motivating exam-
ple.

2.4.4 Other Issues With Imputation

There are many additional imputation issues that are beyond
the scope of this article. For example, there may be bounds on
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Figure 2. Use of likelihood-based approach with EM algorithm to incor-
porate partially observed data.

imputed values which need to accounted for (e.g., as only zero
values for years smoking are plausible for a nonsmoker) (Raghu-
nathan et al. 2001). Similar issues arise when missing values are
known to be within a certain range (e.g., between three and four
on a five-point Likert scale), or when variables require trans-
formations. While important issues, we do not further consider
them.

2.5 Likelihood-Based Approaches

Maximum likelihood is an alternative approach which also
assumes that missingness is MAR. Typically, primary interest
relates to the regression parameters governing the conditional
distribution: f (Y |X, βββ). When some of the predictors are miss-
ing, however, Ibrahim (1990) suggested that information can
be reclaimed by estimating the distribution of the covariates:
f (X|γγγ ). The joint distribution f (X, Y |βββ, γγγ ) is maximized, typ-
ically through use of the EM (expectation-maximization) algo-
rithm (Dempster, Laird, and Rubin 1977). For each observation
with missing data, multiple entries are created in an augmented
dataset for each possible value of the missing covariates, and
a probability of observing that value is estimated given the ob-
served data and current parameter estimates (E-step). The aug-
mented complete-data dataset can then be used to fit the regres-
sion model, accounting for these weights. Figure 2 displays a
hypothetical dataset with a completely observed outcome (Y )
and three dichotomous covariates that are sometimes missing
(X1, X2, and X3). Observation 3 is missing X3, so two entries
are created in the augmented dataset, with w31 + w32 = 1,
w31 = P(X3 = 0|Y = 1, X1 = 1, X2 = 0, βββ, γγγ ). For observa-
tion 7, there are 8 entries in the augmented dataset. Horton and
Laird (1999) reviewed this methodology in detail, while Ibrahim
et al. (2005) compared and contrasted it with other approaches.

One of the complications of this method is the need to model
the nuisance distribution of the covariates. In some settings with

only a few categorical variables a saturated multinomial distri-
bution can be fit. When there are more variables, some simpli-
fication of the joint distribution is often necessary. Lipsitz and
Ibrahim (1996) suggested a conditional approach where

f (X1, X2, X3, . . . , Xp) = f (X1)f (X2|X1)f (X3|X1, X2)

. . . f (Xp|X1, X2, . . . , Xp−1),

where each of the marginal models typically involve only main
effects. Further complications arise with continuous covariates,
since some form of MCEM (Monte Carlo EM) is required
(Ibrahim, Chen, and Lipsitz 1999).

Another complication for maximum likelihood relates to the
calculation of the standard errors of estimates. Implementations
of maximum likelihood that address these complications are
available in LogXact version 7, the S-Plus missing data library
and in SPSS (von Hippel 2004).

2.6 Weighting Methods

Another approach to accounting for missing predictor data is
the use of weighting methods (Robins et al. 1995; Xie and Paik
1997; Horton and Lipsitz 1999; Horton et al. 2001; Carpenter
et al. 2006). In this approach, a model for the probability of miss-
ingness is fit, and the inverse of these probabilities are used as
weights for the complete cases. Weighting approaches can be
fit in software that allows for weights (e.g., Stata, SUDAAN, or
SAS). This approach is detailed for a single missing predictor in
Ibrahim et al. (2005) and Carpenter et al. (2006), but becomes
considerably less tractable with multiple missing variables, par-
ticularly when they are nonmonotone. Due to this limitation, and
the fact that our motivating example is decidedly nonmonotone,
we do not further pursue estimation using weighting methods.

2.7 Bayesian Approaches

While multiple imputation was derived from within a
Bayesian framework (sampling from the posterior distribution
of interest), Bayesian approaches have been applied more gen-
erally. Ibrahim et al. (2005) described estimation with a prior
distribution on the covariates, and the close relationship between
the Bayesian approach and ML and MI methods. In part because
these methods are so flexible, specific coding of prior distribu-
tions and model relationships with a package such as WinBugs
is required for estimation. Such coding is relatively straightfor-
ward, and examples of missing data models are available (Car-
penter, Pocock, and Lamm 2002; Carpenter 2006b), however we
do not further discuss these approaches.

3. SURVEYS OF MISSING DATA METHODS USE IN
PRACTICE

Despite the existence of principled methods for the analysis
of incomplete data regression models, there is some evidence
that their use in applied settings remains limited. We base this
statement on two recent studies of statistical methods used in
medical research.

Burton and Altman (2004) reviewed the reporting of miss-
ing covariate data in 100 cancer prognostic studies published in
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1. quantification of completeness of covariate data

(a) if availability of data is an exclusion criterion, specify the number of cases excluded for this reason,

(b) provide the total number of eligible cases and the number with complete data,

(c) report the frequency of missing data for every variable considered. If there is only a small amount of overall missingness (e.g. > 90%
of cases with complete data), then the number of incomplete variables and the maximum amount of missingness in any variable are
sufficient

2. approaches for handling missing covariate data

(a) provide sufficient details of the methods adopted to handle missing covariate data for all incomplete covariates

(b) give appropriate references for any imputation method used

(c) for each analysis, specify the number of cases included and the associated number of events

3. exploration of the missing data

(a) discuss any known reasons for missing covariate data

(b) present the results of any comparisons of characteristics between the cases with or without missing data

Figure 3. Proposed guidelines for reporting missing covariate data (Burton and Altman 2004). Reprinted with permission of Macmillan Publishers
Ltd: British Journal of Cancer, 2004 July 5; 91(1), 4–8.

2002. Extensive detective work by the authors determined that
81% of the articles had missing data (though the status was un-
clear for 4 articles, and 13 had availability of data as an inclusion
criteria). Of the 81 articles with missing data, 32 stated methods
for the analysis of incomplete observations (several articles used
more than one method). A total of 12 papers used a complete
case approach, 12 available case, 6 omitted between one and four
variables, 4 used a missing indicator approach, 3 used an ad-hoc
single imputation procedure, and only 1 paper used multiple im-
putation. In responses to these limitations, they proposed a set
of guidelines for the reporting of studies with missing covariate
data (Figure 3). In closing, Burton and Altman (2004) noted that:

We are concerned that very few authors have consid-
ered the impact of missing covariate data; it seems that
missing data is generally either not recognised as an
issue or considered a nuisance that is best hidden (p.
6).

Horton and Switzer (2005) reviewed the use of statistical
methods in original research articles published during an 18
month period of 2004–2005 in The New England Journal of
Medicine, a widely read and highly cited medical journal. Of
the n = 331 papers that were reviewed, 26 (8%) reported some
form of missing data methods. For the purposes of this article
we further reviewed those 26 manuscripts, finding that 12 used a
variant of last value carried forward, 13 used an ad-hoc imputa-
tion strategy (e.g., mean imputation), and 2 undertook sensitivity
analyses where missing values were replaced by worst case val-
ues. Two papers used multiple imputation (Smith et al. 2004;
van de Beek et al. 2004). The entire description of this strategy
in Smith et al. (2004) was that “missing values were estimated
by multiple multivariate imputation” and a citation was given to
the MICE approach of van Buuren et al. (1999). The article by
van de Beek et al. (2004) noted that only 320 of the 696 patients
had complete data, and all predictors were used to impute miss-
ing values (using a multivariate normal model, though some of
the variables were categorical). Neither of these two papers pro-
vided the information suggested by Burton and Altman (2004)

that would be sufficient to replicate this analytic approach.
Both reviews indicate that there is a considerable gap between

statistical methodologies and methods that are commonly used
in practice. Flexible comprehensive implementations of these
methods may spur their use.

4. MOTIVATING EXAMPLE: KIDS’ INPATIENT
DATABASE

These methods are demonstrated using the Healthcare Cost
and Utilization Project (HCUP) KIDS’ Inpatient Database (KID)
for the year 2000 (HCUP Kids’ Inpatient Database (KID) 2000).
This dataset, which is publicly available for a fee from the
Agency for Healthcare Quality and Research, collects data from
states on child hospitalizations to improve the quality of health
care. We investigated what factors predicted whether a pediatric
subject with a psychiatric or substance abuse diagnosis had a
routine discharge from the hospital.

More specifically, we included all 10–20 year-old subjects
with a Clinical Classifications Software (CCS) category for pri-
mary, secondary or tertiary diagnosis equal to (66) alcohol-
related mental disorders, (67) substance-related mental disor-
ders, (68) senility and organic mental disorders, (69) affective
disorders, (70) schizophrenia and related disorders, (71) other
psychoses, (72) anxiety; somatoform; dissociative; and person-
ality disorders; (73) pre-adult disorders, (74) other mental con-
ditions, or (75) personal history of mental disorder; mental and
behavioral problems; observation and screening for mental con-
dition.

The outcome in our model was routine discharge versus non-
routine discharge (including transfer to a short-term hospital,
other facility, release to home health care, dying in hospital or
leaving against medical advice).

Predictors in the logistic regression included an indicator of
gender (FEMALE, 1=female, 0=male), AGE (in years), length
of stay (LOS, in days), admission type (ATYPE, 1=emergency,
2=urgent, 3=elective), admission month (AMONTH, used to
derive season of admission, NSEASON), admission on weekend
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Table 1. Descriptive Statistics for KID Dataset

Variable Proportion

routine discharge 85.8%

weekend 19.7%

female 53.7%

RACE/ETHNICITY
white 68.4%
black 16.0%
hispanic 10.3%
other 5.3%

SEASON
winter 23.7%
spring 27.1%
summer 22.9%
fall 26.3%

ADMISSION TYPE
emergency 50.6%
urgent 33.1%
elective 16.3%

VARIABLE MEAN (SD)
age (in years) 16.3 (2.7)
length of stay (LOS, in days) 6.4 (12.7)
total charges (TOTCHG) $9,230 ($17,371)
number of diagnoses (NDX) 3.5 (2.0)

(WEEKEND, 1=Saturday or Sunday, 0=otherwise), number
of diagnoses on original record (NDX), race/ethnicity (RACE,
1=white, 2=black, 3=hispanic, 4=other), and total charges
(TOTCHG, in dollars).

4.1 Descriptive Statistics

Table 1 provides descriptive statistics for the observed data
from the KID dataset. More than four-fifths of the sample were
discharged in a routine fashion, one-fifth during the weekend,
with more than half female and two-thirds white/caucasian. The
average age was 16 years, and the length of stay, total charges
and number of diagnoses were all skewed to the right.

4.2 Missing Data

A total of 133,774 observations were recorded. Data were
complete for the ROUTINE, FEMALE, AGE, LOS, WEEK-
END, and NDX variables.

There were missing values for TOTCHG (4% of dataset),
ATYPE (11% of dataset), RACE (16% of dataset), and NSEA-
SON (12% of dataset). AMONTH and ATYPE were missing
by design since some states restrict the availability of informa-
tion to minimize the possibility of inadvertent reidentification
of subjects in smaller hospitals, while some states prohibited re-
porting data on RACE. A total of 79,574 (59%) of observations
had complete data.

Because LogXact requires variables with missing values to
have no more than 5 levels (coded 0, 1, . . . , 4), the variable

AMONTH was recoded into a variable ASEASON where winter
was defined as months December, January, or February, spring
as months March, April, or May, and so on.

Figure 4 displays the pattern of missing data using routines
within Stata; a similar presentation can be created with SAS, R
or S-Plus.

4.3 Results

Table 2 displays the results from the complete case estimator
(n = 79,017). However, the use of the complete case estimator
means that incomplete observations are excluded from the anal-
ysis, even though for almost all subjects, complete data on the
outcome as well as all but one or two predictors are available.
We now review software implementations to incorporate these
incomplete observations.

5. SOFTWARE PACKAGES

Table 3 lists the missing data implementations considered in
this review. For each package, we provide a general introduction
and discuss any particular issues related to the implementation,
strengths or limitations. For each package, we have included the
code to analyze the motivating dataset along with the relevant
output in an Appendix posted at http:// www.math.smith.edu/
muchado-appendix.pdf .

5.1 Amelia II

Amelia II (Honaker, King, and Blackwell 2006) uses a
bootstrapping-based EM algorithm (e.g., EMis, King et al. 2001)
that is both fast and robust. It includes features for imputing
cross-sectional surveys, time series data, and time-series/cross-
sectional data. The package allows users to put priors on individ-
ual missing cell values in the data matrix, when that knowledge
is available. The article by Honaker and King (2006) provides
additional description of the package.

Amelia II performs the imputation step. Separate analyses
and combination of results can either be undertaken in R using
the Zelig (Imai, King, and Lau 2006) software, or in a sepa-
rate statistics package (e.g., SAS or Stata). The code to install
Amelia and Zelig within R or S-Plus can be found in Figure
A.1 (Appendix), along with the code to combine the multiple
imputations. A screenshot of AmeliaView() can be found in
Figure A.3 (Appendix) while the output is displayed in Figure
A.4 (Appendix).

In addition, a self-install package is available which allows
a user to install Amelia II without any knowledge of, or even
directly running, R. If this route it preferred, Amelia can output
datasets for analysis and combination in another package. Figure
A.2 (Appendix) displays the SAS code to read (lines 1–19),
analyze (lines 21–34), and combine (lines 30–40) output datasets
from Amelia; more information on SAS can be found in Section
5.7.
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. net from http://www.indiana.edu/˜jslsoc/stata

. net install spost9_ado

. misschk

Variables examined for missing values
# Variable # Missing % Missing

--------------------------------------------
1 age 0 0.0
2 atype 15093 11.2
3 aweekend 0 0.0
4 female 0 0.0
5 los 0 0.0
6 ndx 0 0.0
7 race 21880 16.2
8 totchg 5018 3.7
9 routine 0 0.0
10 nseason 15614 11.6

Missing for |
which |

variables? | Freq. Percent Cum.
-------------+-----------------------------------
_2___ _78__ | 33 0.02 0.02
_2___ _7___ | 234 0.17 0.20
_2___ __8__ | 1,213 0.90 1.10
_2___ ____0 | 12 0.01 1.11
_2___ _____ | 13,601 10.09 11.20
_____ _78__ | 73 0.05 11.25
_____ _7__0 | 213 0.16 11.41
_____ _7___ | 21,327 15.82 27.24
_____ __8_0 | 37 0.03 27.26
_____ __8__ | 3,662 2.72 29.98
_____ ____0 | 15,352 11.39 41.37
_____ _____ | 79,017 58.63 100.00
-------------+-----------------------------------

Total | 134,774 100.00

Missing for |
how many |

variables? | Freq. Percent Cum.
------------+-----------------------------------

0 | 79,017 58.63 58.63
1 | 53,942 40.02 98.65
2 | 1,782 1.32 99.98
3 | 33 0.02 100.00

------------+-----------------------------------
Total | 134,774 100.00

Figure 4. Description of missing data (using Stata misschk function).

5.2 Hmisc

The aregImpute function with the HMisc package (Har-
rell 2006) for R and S-Plus supports predictive mean matching
with optional weighted probability sampling from similar cases.
Predictive mean matching works for binary, categorical, and con-
tinuous variables, without the need for computing residuals or
constraining imputed values to be in the range of observed val-
ues. This approach takes all aspects of uncertainty into account
by using the bootstrap to approximate the full Bayesian pre-
dictive distribution for imputations. There is also support for
regression imputation within HMisc.

The packages is available for download from CRAN (the
Comprehensive R Archive Network). Figure A.5 (Appendix)
displays the code to read in the dataset (lines 1–12), create graph-
ical displays (lines 13–15), impute using aregImpute (lines
17–20), then assess convergence and combine results (lines 21–

28). Figure A.6 displays the output from aregImpute and
Figure A.7 (Appendix) a series of graphical displays of missing
data patterns (from Hmisc).

5.3 ICE/Stata

Patrick Royston’s ICE (imputation using chained equations),
implemented within Stata, provides support for categorical miss-
ing values (Royston 2005). Binary variables are predicted from
other variables using logistic regression, while categorical vari-
ables with more levels using either a multinomial or ordered
logistic regression. Some housekeeping is needed when using
indicator variables to represent the multiple levels of a categori-
cal variable. Figure A.8 (Appendix) displays the code to analyze
the KID dataset using ICE.

The software can be installed over the Internet from within
Stata (lines 1–2). Much of the syntax involves the creation of
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Table 2. Results from Complete Case Estimator (Stata)

. logistic routine age nseas1 nseas2 nseas3 aweekend r2 r3 r4 female
a2 a3 los totchg3 ndx

Logistic regression Number of obs = 79017
LR chi2(14) = 1100.68 Prob > chi2 = 0.0000
Log likelihood = -30802.402 Pseudo R2 = 0.0176
------------------------------------------------------------------------------

routine | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | .9603541 .0038511 -10.09 0.000 .9528357 .9679318
nseas1 | .935468 .0278596 -2.24 0.025 .8824273 .9916969
nseas2 | .9818723 .0302025 -0.59 0.552 .9244255 1.042889
nseas3 | 1.038108 .0308933 1.26 0.209 .9792904 1.100459

aweekend | .9437081 .0246635 -2.22 0.027 .8965856 .9933072
r2 | .9825766 .0286533 -0.60 0.547 .9279919 1.040372
r3 | .8133424 .0320256 -5.25 0.000 .7529342 .878597
r4 | .8782054 .039837 -2.86 0.004 .8034966 .9598607

female | 1.093442 .0230012 4.25 0.000 1.049277 1.139465
a2 | 1.401183 .0343642 13.75 0.000 1.335424 1.470181
a3 | 1.474421 .0478478 11.96 0.000 1.383561 1.571248
los | .9960628 .0008627 -4.55 0.000 .9943734 .9977551

totchg3 | .9751805 .0067648 -3.62 0.000 .9620116 .9885298
ndx | .8979635 .0044983 -21.48 0.000 .8891901 .9068234

------------------------------------------------------------------------------
. logit
Logistic regression Number of obs = 79017
LR chi2(14) = 1100.68 Prob > chi2 = 0.0000
Log likelihood = -30802.402 Pseudo R2 = 0.0176
------------------------------------------------------------------------------

routine | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | -.0404532 .0040101 -10.09 0.000 -.0483128 -.0325936
nseas1 | -.0667083 .0297815 -2.24 0.025 -.1250789 -.0083377
nseas2 | -.018294 .0307601 -0.59 0.552 -.0785828 .0419947
nseas3 | .0374 .0297592 1.26 0.209 -.020927 .0957271

aweekend | -.0579384 .0261347 -2.22 0.027 -.1091615 -.0067153
r2 | -.017577 .0291614 -0.60 0.547 -.0747323 .0395783
r3 | -.2066032 .0393753 -5.25 0.000 -.2837774 -.1294289
r4 | -.1298747 .0453619 -2.86 0.004 -.2187824 -.0409671

female | .0893302 .0210356 4.25 0.000 .0481013 .1305592
a2 | .3373171 .0245251 13.75 0.000 .2892488 .3853855
a3 | .3882654 .0324519 11.96 0.000 .3246608 .45187
los | -.003945 .0008661 -4.55 0.000 -.0056425 -.0022475

totchg3 | -.0251326 .0069369 -3.62 0.000 -.0387288 -.0115365
ndx | -.1076259 .0050095 -21.48 0.000 -.1174442 -.0978075

_cons | 2.803206 .0730586 38.37 0.000 2.660013 2.946398
------------------------------------------------------------------------------
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Table 3. General Purpose Software Implementations of Missing Data Routines

Software Vendor/ Approaches
Routine package author implemented

Amelia II R Honaker, King and
Blackwell

hybrid EM with bootstrap

Hmisc R and S-Plus Frank Harrell chained-equation using predicted mean match-
ing or regression imputation

ICE Stata Patrick Royston chained-equation

IVEware SAS or standalone exe-
cutable

University of Michigan chained-equation (supports complex survey de-
signs + constraints)

LogXact LogXact 7 Cytel Maximum likelihood

MICE R and S-Plus van Buuren et al chained-equation (and potential NINR models)

PROC MI SAS v9.1 SAS Institute MCMC for Gaussian, PMM, regression, logistic,
polytomous and discriminant models

missing data library S-Plus 7 Insightful Maximum likelihood or conditional Gaussian im-
putation model

indicator variables with appropriate missingness structure (lines
6–24). This must be done in advance so that ICE can create them
from imputed values using the passive and substitute
statements (lines 32–35). To allow commands to be split onto
separate lines, the delimit statement is used (lines 28 and 36).
Multinomial logit models are used for the SEASON, RACE, and
ATYPE variables, while a linear regression model is used for to-
tal charges (line 31). The imputed datasets are saved into a dataset
called imputed and this is used to fit the regression model of
interest (lines 40–41). Figures A.9 and A.10 (Appendix) display
the output.

5.4 IVEWARE

IVEware (http:// www.isr.umich.edu/ src/ smp/ ive) by Raghu-
nathan et al. is a SAS version 9 callable routine built using the
SAS macro language or a standalone executable. In addition to
supporting chained equations, it extends multiple imputation to
support complex survey sample designs.

Installation of the SAS-callable version is straightforward, as
it consists of 19 SAS command files. The distribution includes an
example dataset to help verify the installation. Figure A.11 (Ap-
pendix) displays the code to fit the logistic regression imputation
model while Figure A.12 (Appendix) provides the output.

5.5 LogXact

LogXact is a standalone package for the analysis of gener-
alized linear models. LogXact version 7 incorporates support
for the likelihood methodology of Ibrahim (1990) for up to 10
categorical covariates with missing values (each with up to five
levels). There is no practical limit on the number of fully ob-
served predictors. The software functions via a graphical inter-
face. Since our motivating example had a predictor (TOTCHG,

or total charges) that was continuous, we had to drop observa-
tions where TOTCHG was not observed (approximately 4% of
the dataset). One of our missing predictors was month of admis-
sion; because only five levels were allowed we coded this into
a SEASON variable with four levels. Figure A.13 (Appendix)
displays a screenshot of LogXact’s results from the missing data
model.

We ran into some precision or collinearity issues related to
the range of TOTCHG (when this variable was divided by 1,000
the models worked, as well as when we fit the untransformed
variable using only complete cases). There was also a minor
bug in the display routines (Cytel reports that these bugs have
been fixed and will ship in the next release). The requirement
that categorical variables take on values starting from zero in
sequence to a max of four required some tedious recoding.

Although there was an option to display the variance-
covariance matrix of the regression parameters, there were fatal
memory errors on the testing machine when these were checked.
Access to the variance covariance matrix is needed to calculate
functions of the regression parameters, or to conduct multiple-df
tests.

5.6 MICE

MICE (Multiple Imputation by Chained Equations) is a li-
brary for S-Plus and R. The package is available from the Com-
prehensive R Archive Network. A variety of imputation models
are supported, including forms of predictive mean matching and
regression methods, logistic and polytomous regression, and dis-
criminant analysis. In addition, MICE allows users to program
their own imputation functions. In theory, this could facilitate
sensitivity analyses of different (possibly nonignorable) miss-
ingness models. The imputation step is carried out using the
mice() function.

We note that a bug initially yielded incorrect inferences from
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the logistic regression model. A patch is now available for release
1.14. Figure A.14 (Appendix) displays the code from mice for
reading in the dataset (lines 1–9), imputation (lines 10–11), and
combination of results (lines 12–14). Figure A.15 (Appendix)
displays the output and results.

5.7 SAS PROC MI

Analysis using multiple imputation in SAS/STAT is carried
out in three steps. First, the imputation is carried out by PROC
MI. Then, complete data methods are employed using any of the
SAS procedures for complete data analysis (e.g., PROC GLM,
GENMOD, PHREG, or LOGISTIC); the “BY” statement re-
peats the analysis for each completed dataset. Finally, the results
are combined using PROC MIANALYZE. No additional instal-
lation was needed for PROC MI/PROC MIANALYZE, since it
is part of the SAS/STAT product.

PROC MI incorporates a number of different imputation meth-
ods. For nonmonotone missing data patterns, the MCMC state-
ment can be used either for all missing data or to impute enough
data so that the remaining missing data is monotone. At present
only continuous variables (those not specified in the CLASS
statement) can be included for MCMC imputation. Extensive
control and graphical diagnostics of the MCMC methods are
provided.

For monotone data, the MONOTONE statement is used to
describe the imputation method. Continuous variables can be
imputed using multivariate regression, regression using predic-
tive mean matching (each of these assuming normality), or via
propensity scores. Categorical variables, specified in the CLASS
statement, can be imputed via logistic (or ordinal logistic) regres-
sion, discriminant analysis (only continuous predictors allowed)
or propensity scores. The approaches can be combined in the
same PROC MI, allowing, for example, regression, propensity
score, and discriminant analysis to be used in completing a single
dataset.

The propensity score approach fits a logistic regression model
predicting the missingness indicator, then orders the observa-
tions by predicted probability of missingness. Next, the ordered
observations are split into G equal-sized groups. Loosely, the
imputed value is then chosen at random from among the ob-
served values in the same one of the G groups as the missing
observation Lavori et al. (1995); G can be chosen by the user.

The logistic (or ordinal logistic) regression approach is the
standard one proposed by Rubin (1987). Analogous to the lo-
gistic regression approach, the discriminant analysis approach
creates a probability of each level of a categorical variable, then
draws a random uniform variate and assigns an imputed level
based on this. The distinction is that the probabilities are based
on discriminant analysis, rather than logistic regression. The user
has some control over details of the process used. The advantage
of this approach is that nominally valued variables can be im-
puted, rather than the ordinal values required for ordinal logistic
regression.

The code to fit PROC/MI using a two-stage imputation is dis-
played in Figure A.16 (Appendix), with output in Figure A.17
(Appendix). This approach exploits the particular patterns ob-
served in the motivating example. Because so few observations

were missing for TOTCHG (approximately 4% missing), 20
imputed datasets were created as a function of the fully ob-
served variables (lines 1–5). Imputation was then carried out
for the three remaining variables (T=ATYPE, S=SEASON,
R=RACE). Lines 15–17 create a variable that describes the
missingness pattern (111=fully observed, 112=race and type
observed, season missing, etc.). Separate monotone imputations
are carried out for each pattern, based on what is observed (lines
26–46) and these imputed values are merged into a single data
(lines 48–52). The logistic regression model is fit for each im-
puted dataset (lines 56–61) and the results are consolidated using
MIANALYZE (lines 72–76).

The three-stage approach used in SAS highlights the notion of
using different software to impute, analyze, and combine meth-
ods. For example, if a desirable imputation package does not ex-
ist in one’s preferred analysis package, one could impute using
a stand-alone imputation package, save the resulting completed
datasets, and import them for data analysis. The analyses could
then be exported to a third package for combining the results.
This approach is demonstrated using Amelia for imputation and
SAS for analysis in Figure A.2 (Appendix).

5.8 Missing Data Library for S-Plus

S-Plus version 7.0 includes a missing data library that ex-
tends S-Plus to support model-based missing data models using
the methodology of Schafer (1997), by use of the EM algorithm
(Dempster et al. 1977), and data augmentation (DA) algorithms
(Tanner and Wong 1987). DA algorithms can be used to gener-
ate multiple imputations. The missing data library provides sup-
port for multivariate normal data (impGauss), categorical data
(impLoglin) and conditional Gaussian models (impCgm) for
imputations involving both discrete and continuous variables.

Figure A.18 (Appendix) displays the code to access the library
and read in the data (lines 1–14), create imputed datasets (lines
18–22), and combine results (lines 23–29). Figure A.19 (Ap-
pendix) displays the output from the S-Plus missing data library.
Infinite values were created for four observations with missing
TOTCHG, which led to nonconvergence of the EM algorithm.
These values were dropped in the imputations. This anomaly
was reported to Insightful Technical Support, though resolution
is unknown as of press time.

5.9 Other Packages and Routines

Other packages which provide support for imputation include
Joseph Schafer’s free software (macros for S-Plus and standalone
windows package NORM), SOLAS, and SPSS. Schafer’s soft-
ware routines are an excellent companion to his book, but they
do not support general-purpose regression modeling and more
modern implementations are available in S-Plus. SOLAS is de-
signed specifically for the analysis of datasets with missing ob-
servations, and version 3.0 was reviewed previously (Horton and
Lipsitz 1999). Because the current version of SOLAS (3.2) does
not support estimation of logistic regression models, we did not
fit models using the package. Support for missing data is in-
cluded in the SPSS version 12.0 missing value library, reviewed
by von Hippel (2004).
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Table 4. Results (in terms of log OR and SE) for Selected Regression
Parameters for a Variety of Incomplete Data Logistic Regression Models

Package WEEKEND FEMALE TOTCHG

complete case −0.058 (0.026) 0.089 (0.021) −0.004 (0.0010)
Amelia II −0.027 (0.020) 0.103 (0.016) −0.005 (0.0005)
Hmisc −0.020 (0.020) 0.099 (0.016) −0.005 (0.0005)
ICE −0.020 (0.020) 0.099 (0.016) −0.004 (0.0005)
IVEware −0.021 (0.020) 0.100 (0.016) −0.004 (0.0005)
MICE −0.021 (0.020) 0.100 (0.016) −0.004 (0.0005)
LogXact −0.026 (0.020) 0.105 (0.016) −0.005 (0.0005)
SAS PROC MI −0.036 (0.021) 0.119 (0.017) −0.003 (0.0006)
S-Plus −0.018 (0.020) 0.098 (0.016) −0.004 (0.0005)

Footnote: TOTCHG parameter represents change of $1,000

6. MISSING DATA MODELING IN KID DATASET

We now return to the analysis of the motivating example. Table
4 displays the results (in terms of log OR and SE) for several of
the regression parameters for the complete case and incomplete
data logistic regression models.

In general, the parameter estimates for the FEMALE and
TOTCHG are quite similar for all missing data models relative to
the complete case estimator. For the WEEKEND parameter, the
95% confidence interval for the complete case estimator would
not include zero, which is not the case for the other models. The
differing results for the WEEKEND parameter may indicate a
selection bias due to discarding all the partially observed ob-
servations. The standard error estimates for the complete case
estimator are as much as 30% larger than those of the missing
data models.

7. CONCLUSION

It is critically important to address missing data, as it arises in
almost all real-world investigations. Accounting for incomplete
observations is particularly important for observational analyses
with many predictors. In our motivating example, no predictor
was missing more than 16% of the time, yet 41% of observations
had at least one missing value. Dropping all these observations
and fitting a model to only the complete cases would be hugely
inefficient and potentially biased.

In this article, we have briefly described a series of principled
methods that can be fit logistic regression models with incom-
plete data, reviewed their implementation in general purpose
statistical software, and applied them to our motivating exam-
ple.

We found that it is feasible to fit imputation models in practice,
though there are some limitations, complications and shortcom-
ings of current implementations. Additional time and effort is
needed to specify models in addition to the primary focus of in-
ference, further assumptions are required and compromises may
sometimes be necessary. However, the value of this additional
work is often justified by the potential increase in efficiency and
decrease in bias.

While not a focus of our article, sensitivity analyses are an
important component of modeling when some data are missing,

and should be routinely conducted. Such additional analyses re-
quire effort, but allow insight into the impact of missing data
assumptions.

Reviews of methodologies used to account for missing values
in practice indicate that for prognostic studies of cancer and
research articles in the New England Journal of Medicine, use
of principled approaches is relatively rare. Despite some of their
limitations, the existence of these implementations should help
to foster increased use of missing data methods in practice.

APPENDIX

Figures describing code for analysis and results can be found
at http:// www.math.smith.edu/ muchado-appendix.pdf .
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